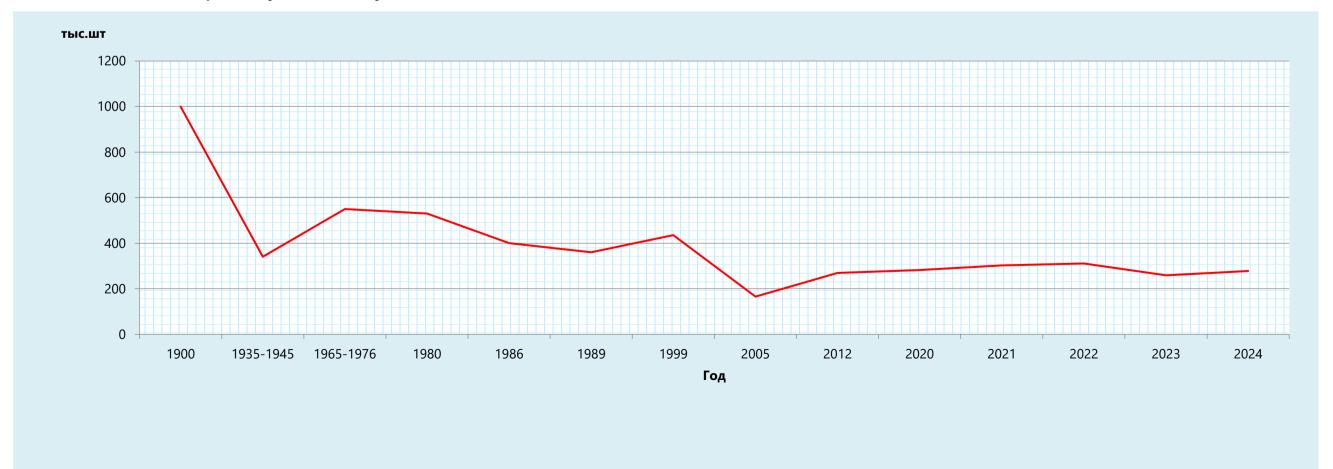


Комплексные исследования состояния популяции каспийского тюленя


PUBLIC 18/12/24

Исторические данные и принятые решения

Согласно литературным данным в конце прошлого тысячелетия численность каспийского тюленя составляла 1 млн особей, под влиянием промысла к середине 1941-1946 гг. сократилась до уровня 350 тыс. особей, для восстановления популяции были приняты меры по ограничению промысла, что позволило увеличить его численность до уровня 650 тыс. особей в 1960-80 гг., в дальнейшем с увеличением промысла и гибели от различных заболеваний численность сократилась до уровня 168 тыс. особей. Для сохранения популяции прикаспийскими странами вид занесен в Красные книги прибрежных стран и промысел был полностью остановлен в 2020 г. С 2006 г наблюдается медленное восстановление популяции до уровня 300 тыс. особей.

Состояние популяции в настоящее время вызывает серьезное беспокойство по причине антропогенной деятельности на Северном Каспии и практически полного отсутствия новой достоверной информации о современной численности, рождаемости и других параметрах каспийского тюленя. Так, визуальные авиаучеты каспийского тюленя, проведенные казахстанскими и британскими специалистами на Северном Каспии в 2000-2005 гг. дали оценку запасов тюленей около 168 тыс. особей на ледовом поле, с тенденцией ежегодного снижения на 3-4%. На основе этих данных Международный Союз Охраны природы (IUCN) в 2008 г. присвоил категорию «вид, находящийся в опасности». В 2020 г. каспийский тюлень внесен в Красную книгу Казахстана, как «вид находящийся в опасности».

Исследования, выполненные в 2020-2024 гг.

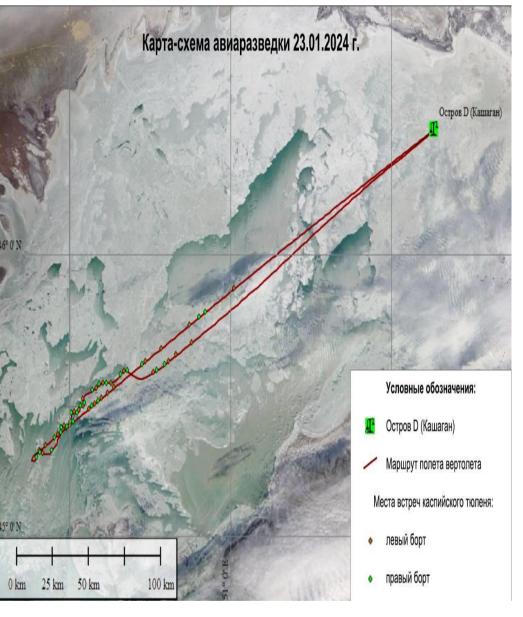
- 1. Мониторинг воздействия на популяцию каспийского тюленя в период ледокольной навигации в 2024 г.
- 2. Учет каспийского тюленя на акватории Северного Каспия в зимний и весенний периоды в 2020-2024 г.
- 3. Изучение современного состояния популяции тюленей в 2020-2023 гг.

1. Мониторинг воздействия на популяцию каспийского тюленя в период ледокольной навигации в 2024 г.

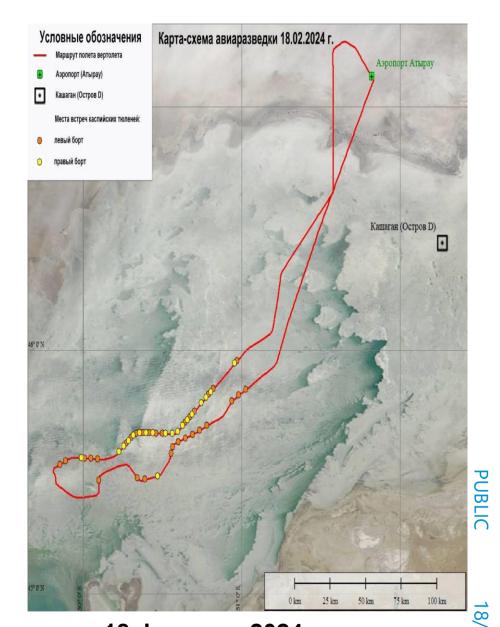
Цель: реализация мероприятий по предупреждению влияния на каспийского тюленя в результате деятельности Компании на Северном Каспии. Разработка мер по смягчению воздействия зимних ледокольных операций на популяцию каспийского тюленя в 2024 году.

Задачи исследований:

- авиаразведка для построения маршрута движения ледокольных судов с учетом распределения тюленей на ледовом поле;
- мониторинг воздействия ледокольной навигации на популяцию тюленей в районах их скоплений;
- оценка эффективности ранее разработанных мероприятий по снижению воздействия движения судов ледокольного класса на популяцию тюленей и рекомендации по усовершенствованию данных мероприятий.


Проведение авиаразведки с целью корректировки маршрута движения ледокола для минимизации

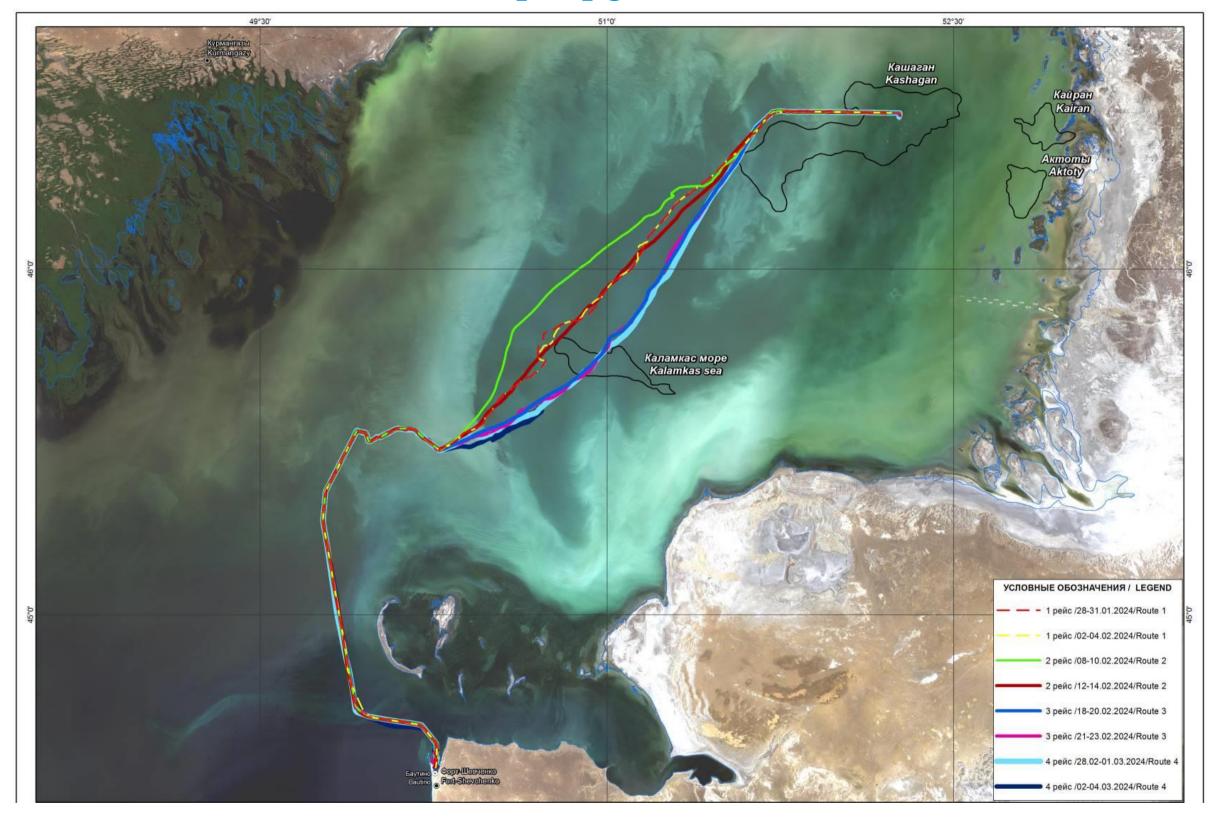
воздействия на тюленей



Группа исследователей из трех специалистов по изучению морских млекопитающих.

Оборудование для проведения авиа фотосьёмки: фотоаппараты с объективами 18*300, бинокли 10х50, GPS, диктофоны.

23 января 2024 г.



18 февраля 2024 г.

Маршрут полета.

Маршрута движения ледоколов

Группа исследователей состояла из 6 специалистов по изучению морских млекопитающих.
Оборудование для проведения авиа фотосьёмки: фотоаппараты с объективами 18*300, бинокли 10х50, GPS, диктофоны, лазерные линейки, судовой тепловизор.

Маршруты ледокола «Тулпар»

Результаты авиаразведки над маршрутами ледокольных судов в январе – феврале.

По данным аэровизуальных обследований установлено и выполнено при планировании маршрута ледокольных судов следующее:

- начало периода рождения щенков последняя декада января;
- аэровизуальные обследования проводились над маршрутом движения ледокольных судов, результаты облетов передавались капитанам судов и специалистамнаблюдателям за тюленями для корректировки ледокольной навигации в обход мест щенки тюленей;
- на 23 января по маршруту авиаразведки было отмечено 16 участков расположения щенных залежек, зарегистрировано 134 особей, из них 134 взрослых, щенка у тюленей еще не началась, средняя плотность тюленей в районе обследования составила 0,74 экз. на км²;
- на 18 февраля по маршруту авиаразведки было отмечено 9 участков щенных залежек, на которых зарегистрировано 300 экз. тюленей (225 взрослые и 75 щенки) при средней плотности 0,96 экз.на км², из которых щенки 0,24 экз. на км²;

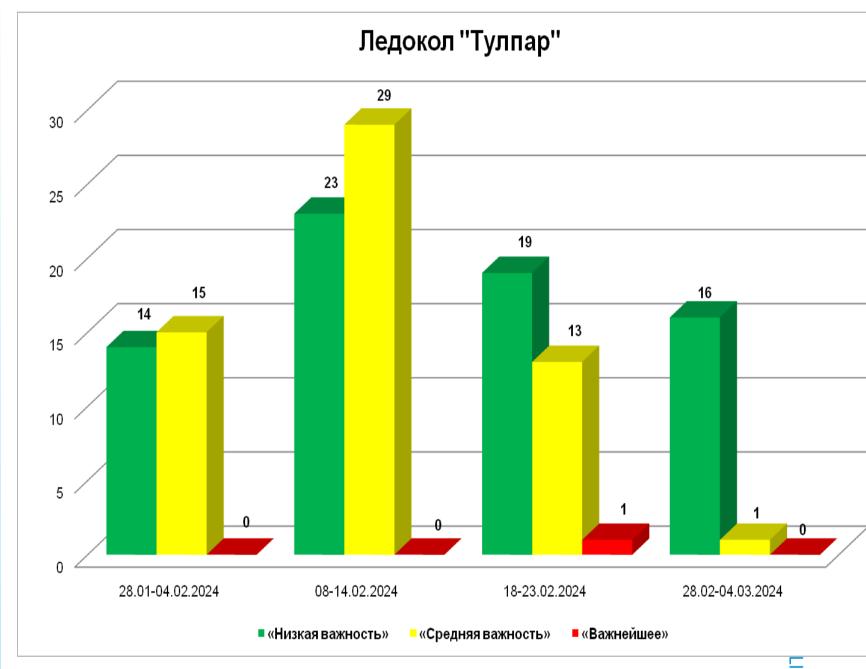
Численность каспийского тюленя в районе судовых маршрутов

Данные по результатам движения ледоколов по разработанным маршрутам Ледокол **«Тулпар»**

Тюлени	1 рейс	2 рейс	3 рейс	4 рейс	Всего
Пара "самка-щенок", шт.	55	441	37	4	537
Одиночный щенок, ос.	14	118	33	395	560
Одиночный взрослый, ос.	1083	1049	81	3239	5452
Всего взрослых, ос.:	1138	1490	118	3243	5989
Всего щенков, ос.:	69	559	70	399	1097
Всего тюленей, ос.:	1207	2049	188	3642	7086

В период зимней навигации ледоколом «Тулпар» совершено четыре рейса из порта Баутино на месторождение Кашаган и обратно. Всего за период с 28 января по 4 марта находящимися на борту судна наблюдателями отмечено, в общей сложности 7086 особей каспийского тюленя). Из них: 5452 одиночных взрослых, 560 одиночный щенок и 537 пара «мать-щенок»).

Щенные залежки тюленей располагались на льду от о. Кулалы на запад на расстоянии до 100 км вдоль кромки ледового поля и на глубину (на север, северо-восток) до 20-30 км, с максимальным удалением в направлении месторождения Каламкас-Хазар.

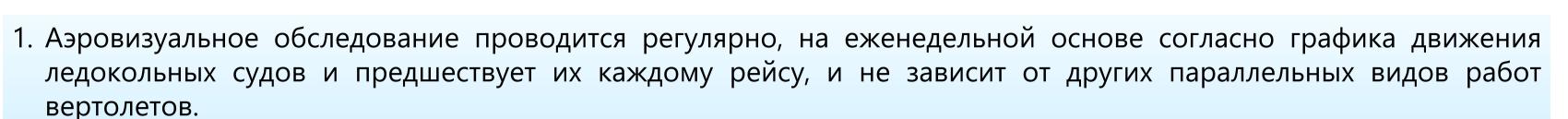


Оценка воздействия движения ледоколов на популяцию тюленей

За четыре рейса навигации, с борта ледокола «Тулпар» в 150 м зоне зарегистрировано 131 встречи с тюленями, из которых классифицированные как «низкая важность» составили 55,0% (72 встреча) от общего числа, 44,3% (58 встреч) классифицированы как «средняя важность» и 0,7% (1 встреча) как «важнейшие».

Ледокол «Тулпар» при 131 встречах совершил 56 маневров – снижение скорости, остановка судна, отклонение от курса влево или вправо, из них 31 раз снижало скорость, 15 раз судно полностью останавливалось, в остальных случаях (10) маневрировало в право или в левую сторону от курса.

Отмеченный процент воздействия «низкой и средней важности» свидетельствует о том, что экипажи судов в ходе зимней навигации взаимодействуют со специалистами - наблюдателями и уверенно отрабатывают маневры уклонения при встрече со скоплениями тюленей. И, следовательно, внимательное планирование маршрутов и осторожная навигация предотвращает воздействие на размножающихся тюленей


«Низкая важность» – удаление более 150 м от борта судна ледокола.

«Средняя важность» - удаление от 50 до 150 м от борта судна ледокола.

«Высокая важность» – удаление от 10 до 50 м от борта судна ледокола.

18/12/20

Заключение

- 2. Для проведения авиаразведки и/или учетов используется группа специалистов, владеющих методикой сбора материала и навыками использования необходимого для этого оборудования (персональный компьютер с соответствующими программами, персональный навигатор, фотокамера с длиннофокусной оптикой, диктофон, лазерный дальномер).
- 3. Предоставлять информации авиаразведки о размещении тюленей в виде карт (с цветными полями, отражающими плотность размещения тюленей), на которых отображены наиболее плотные скопления, должна передаваться на борт судов (капитанам и наблюдателям за тюленями) сразу же после завершения облета.
- 4. Планировать трассу движения ледоколов в соответствии с материалами, полученными при авиаразведке. Прокладывать трассу движения в обход основных мест щенки тюленей, для минимизирования воздействия судов на популяцию каспийского тюленя.
- 5. Для снижения воздействия «высокой важности» с 1 по 20 февраля ограничить движение ледоколов в ледовом поле в период массовой щенки тюленей в Северном Каспии. Осуществлять прохождение судов через скопления размножающихся тюленей в светлое время суток при скорости ледокола около 6 км/ч (3,5 узла), при необходимости обеспечить полную остановку ледокола, пока животные не покинут опасную зону.
- 6. Рекомендуется дополнительное оснащение судов тепловизорами по бортам для увеличения расстояния видимости до 200-250 метров с каждого борта.

2. Авиаучет каспийского тюленя на акватории Северного Каспия в зимний и весенний периоды

Международная программа «Оценка численности, распределения и естественного воспроизводства каспийского тюленя на Казахстанской и Российской акватории Северного Каспия в 2020-2024 гг.

Цель исследований: Оценка численности тюленей в Каспийском море по материалам авиаучета (мультиспектральной аэрофотосъемки) щенных лежбищ в зимний и весенний периоды 2020-2024 г.

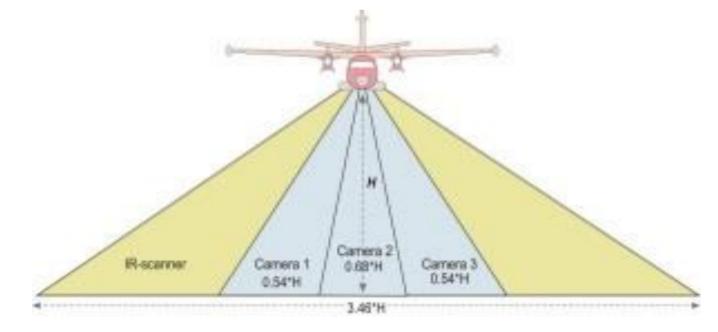
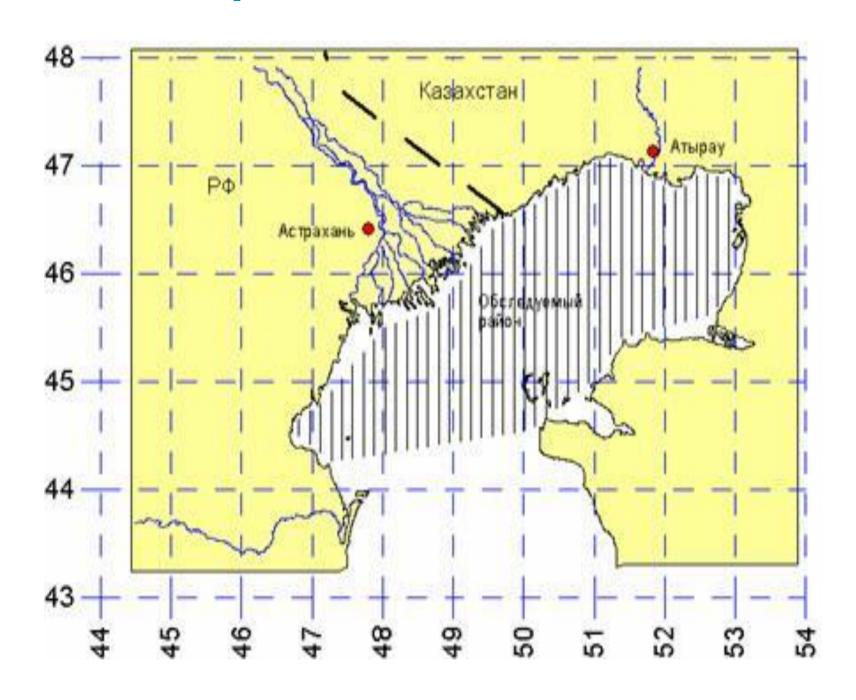
Задачи:

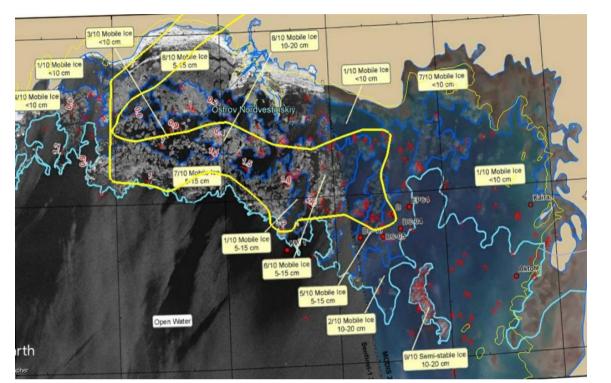
- проведение мультиспектрального авиаучета численности маточного поголовья популяции и приплода с применением инфракрасной, видео и фото съемок с самолета;
- определение характера и плотности распределения ледовых залежек животных, картирование мест концентрации тюленя. Определение соотношения количества самок и детенышей;
- определение останков тюленей на льду;
- камеральная обработка материалов авиасъёмок, верификация материалов, их компоновка и подготовка к оценке численности тюленей;
- определение численности каспийского тюленя на ледовом поле и общей численности и разработка предложений по сохранению его популяции;
- учет численности тюленей в линный период на шалыгах северо-восточного Каспия.

NCOC NORTH CABPIAN OPERATING COMPANY

2. Авиаучет каспийского тюленя на акватории Северного Каспия в зимний и весенний периоды

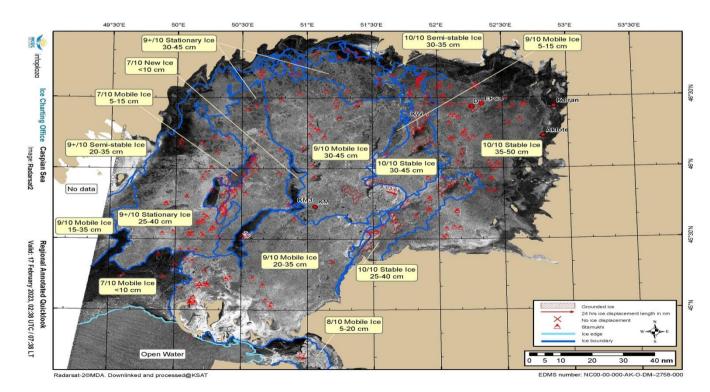
Самолет Piper PA-34, подготовленный для авиаучета численности тюленей

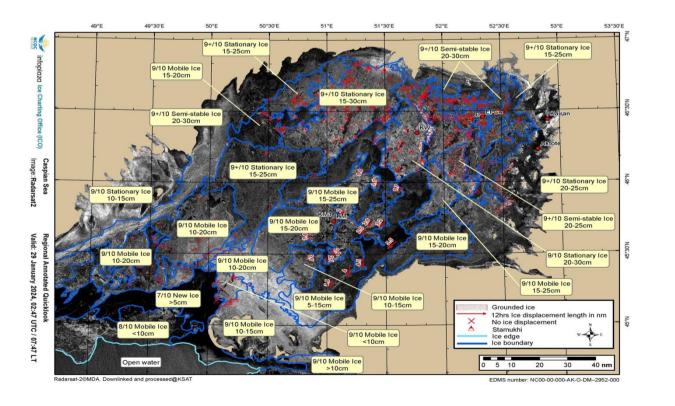

Схема проведения мультиспектральной съемки включает использование 2 тепловизоров, 2 фотоаппаратов с высоким разрешением, широкоформатной видеокамеры, 2 GPS-прибора, 2 ноутбуков с программным обеспечением для проведения ИК, фото и видеосъемки

В основу исследований принята Международная сетка трансект для учета численности тюленей

Анализ ледовой обстановки в Северном Каспии необходим для разработки маршрута проведения авиа учета каспийского


ТЮЛЕНЯ

50°E 50°DE 51°E 51°DE 52°E 52°E 52°DE 53°E 51°DE 51°DE 52°E 52°DE 53°E 51°DE 5


Теплая зима, 22.02.2020 г.

Холодная зима, 25 02 2021 г.

Теплая зима, 24 02 2022 г.

Умеренная зима, 25.02.2023 г

Умеренная зима, 24.02.2024 г

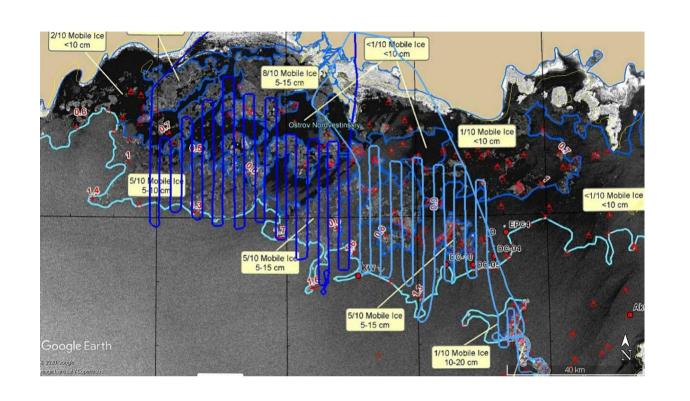
• практическая дальность полета, км 1300;

• скорость полета при авиасъемке, км/ч 200-210;

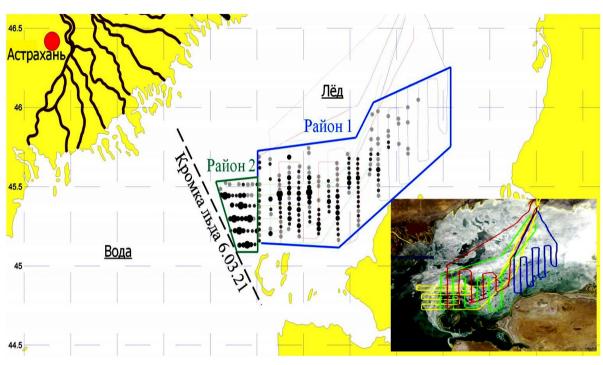
• крейсерская скорость, км/ч 240;

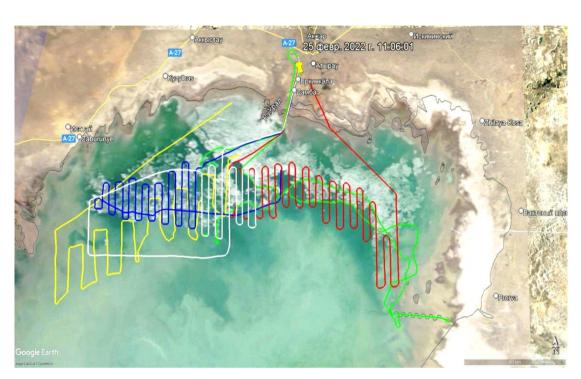
• максимальная продолжительность полета, ч 5;

• основная высота проведения авиасъемки, м 180-200.

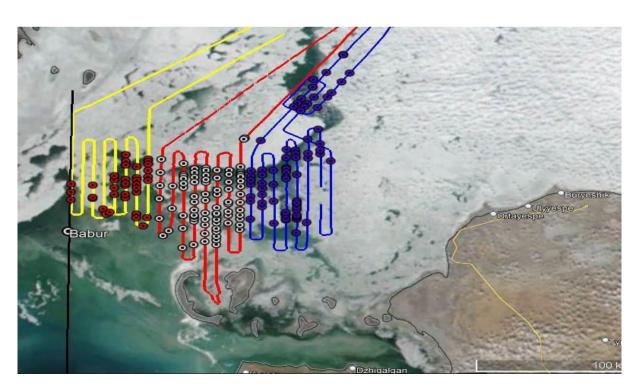


Аппаратура, установленная на самолете для проведения съемок:

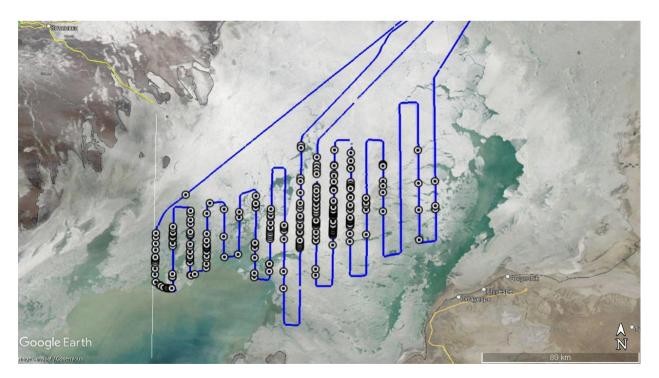

- бортовая автоматизированная система (БАС) на базе двух ЭВМ;
- спутниковая навигационная аппаратура;
- 2 тепловизора Optris PI450 и Flir A325;
- 2 фотокамеры высокого разрешения NIKON D850;
- обзорная фотокамера GoPro 11 (основная и резервная);
- лазерный высотомер, лидар SF 30/D.


NCOC NORTH GABPIAN OPERATING COMPANY

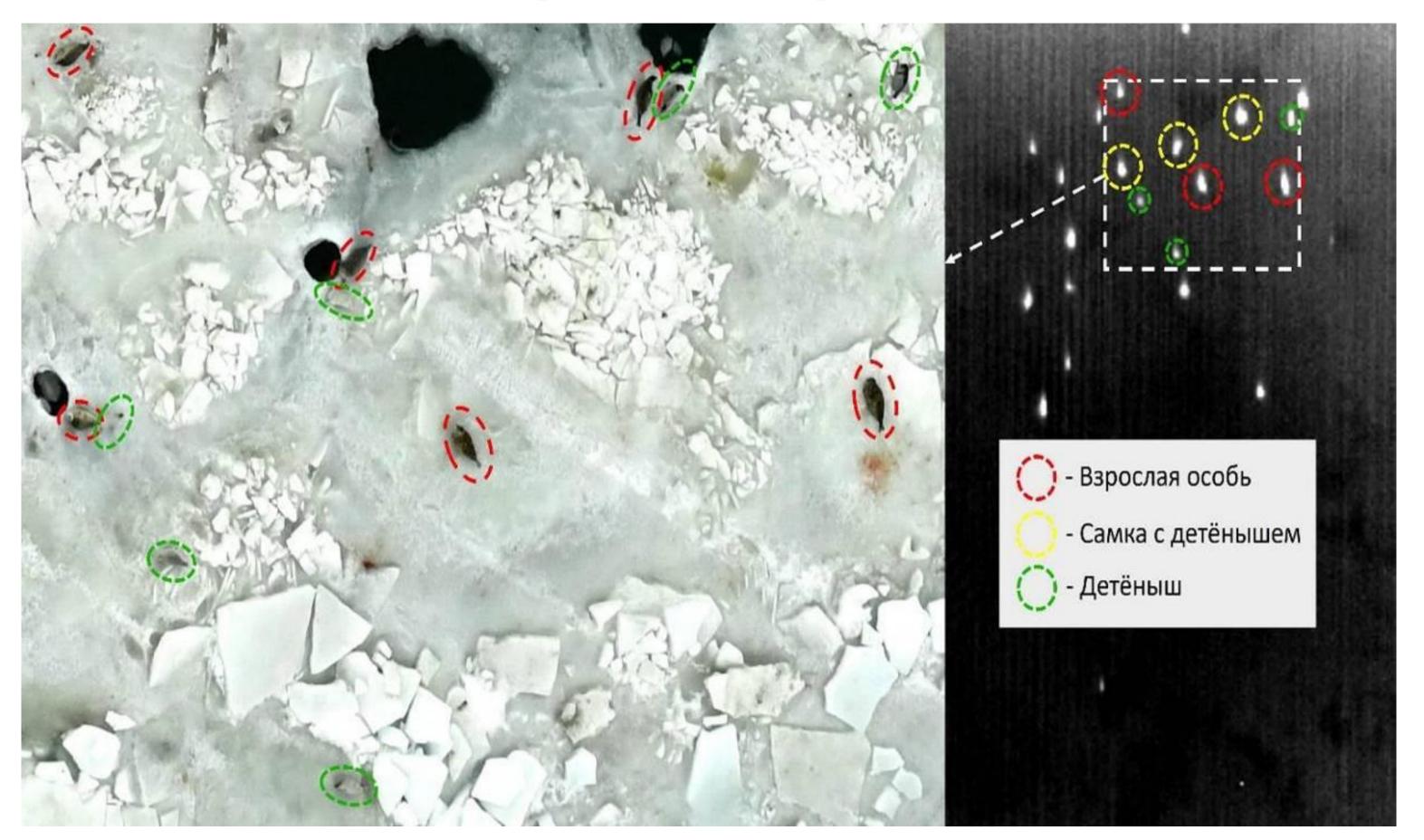
Проведение авиасъемки, получение фото, видео снимков и данных с тепловизоров (ИК) для расчета численности каспийского тюленя



21-22.02.2020



25-28.02.2021 23-25.02.2022



24-25.02.2024

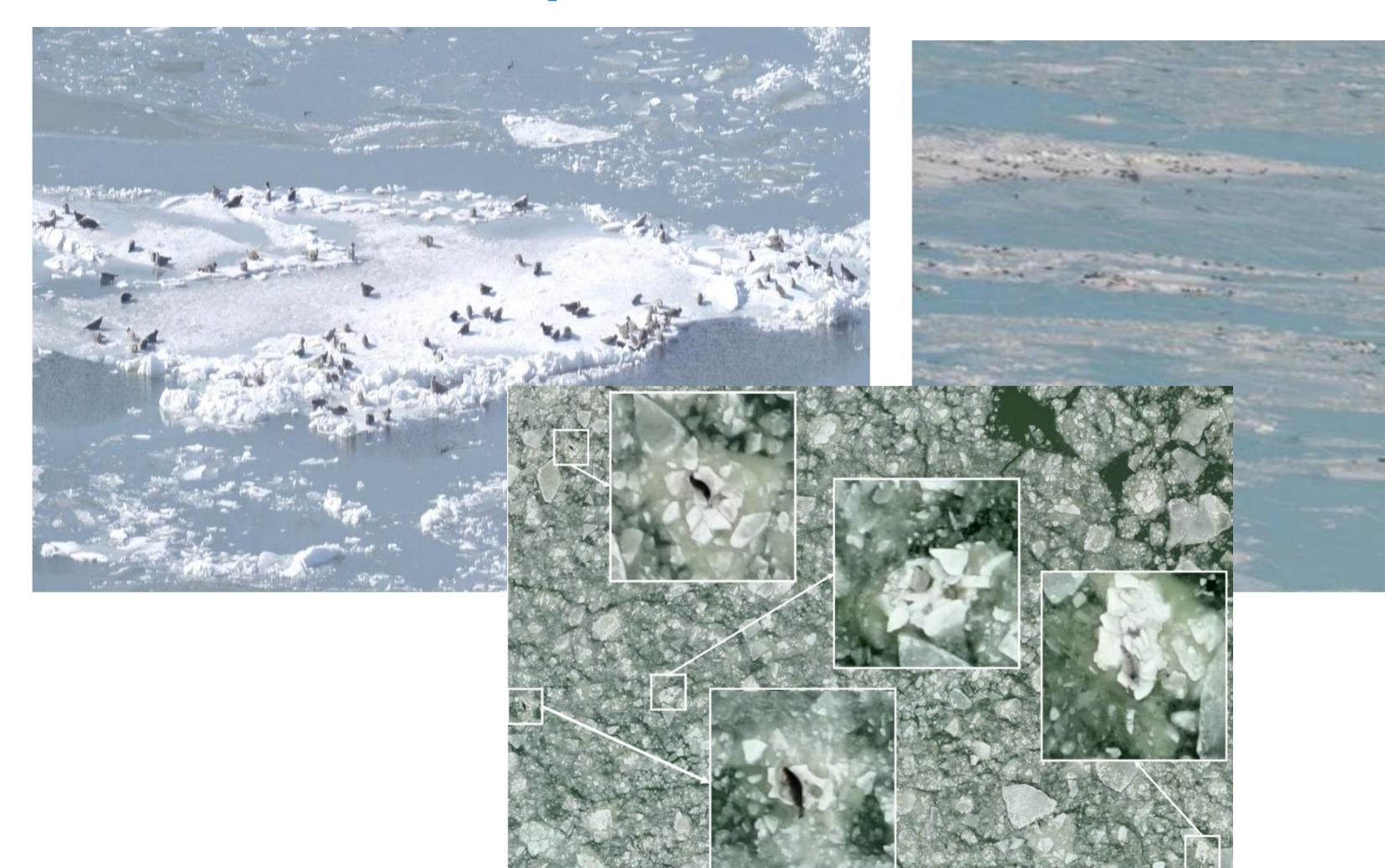
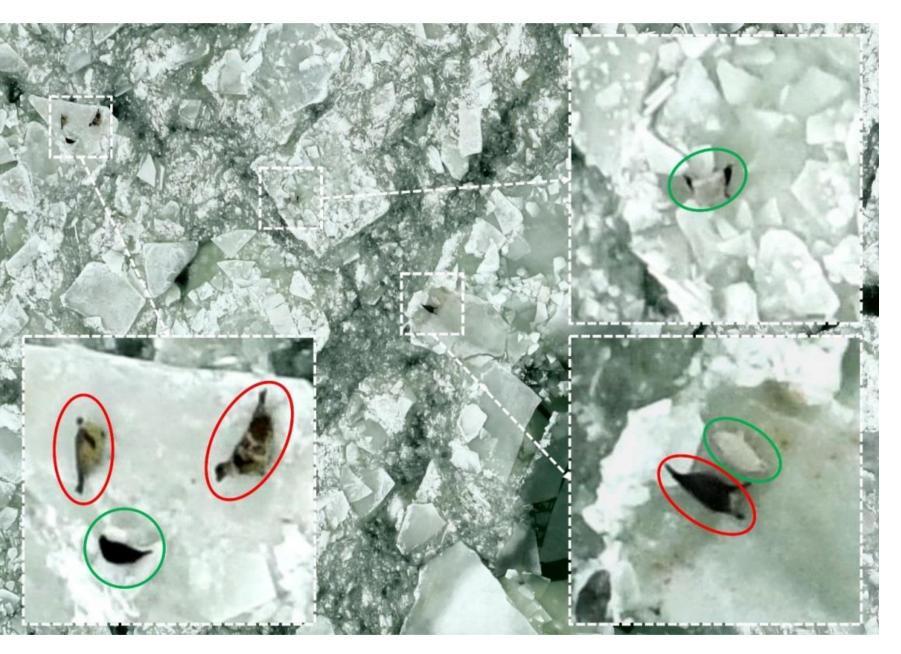

NCOC NORTH GASPIAN OPERATING COMPANY

Фото и ИК-изображение скопления тюленей на льду (Каспийское море, тепловизор Flir A325)

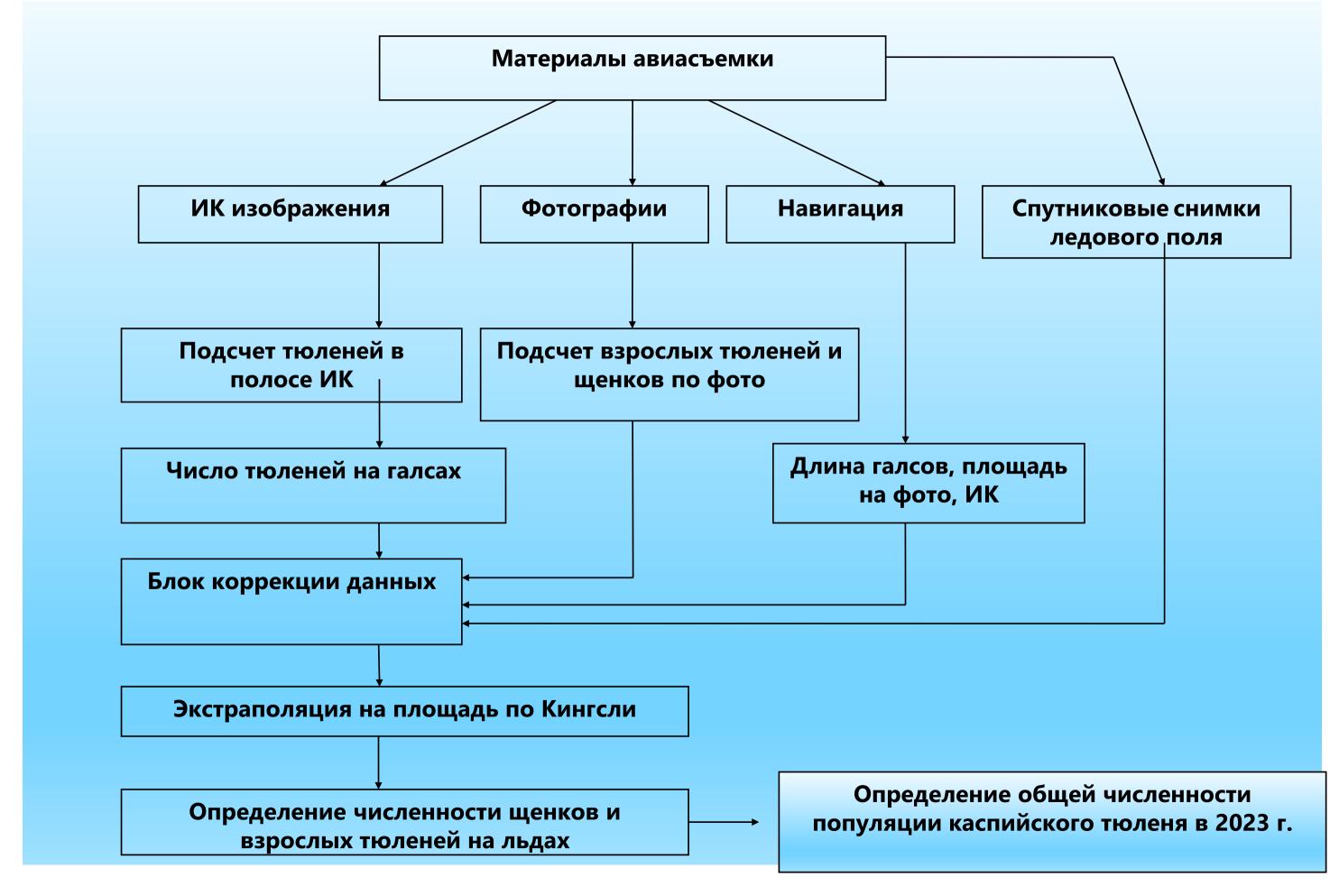
ROBLIC

Распределение тюленей на ледовом поле



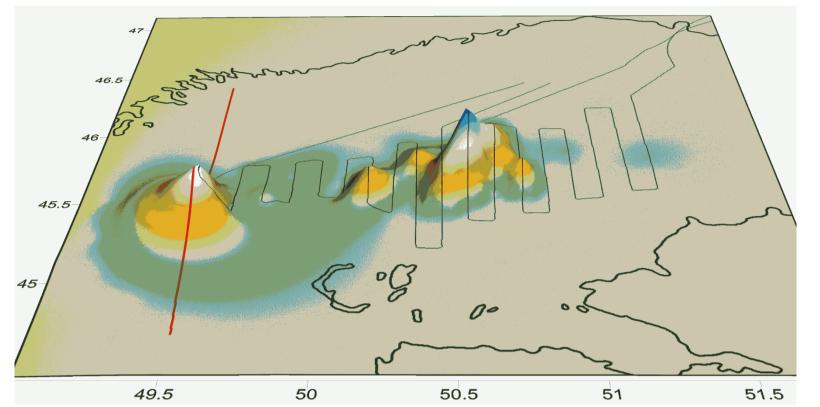
NCOC NORTH GABRIAN OPERATING COMPANY

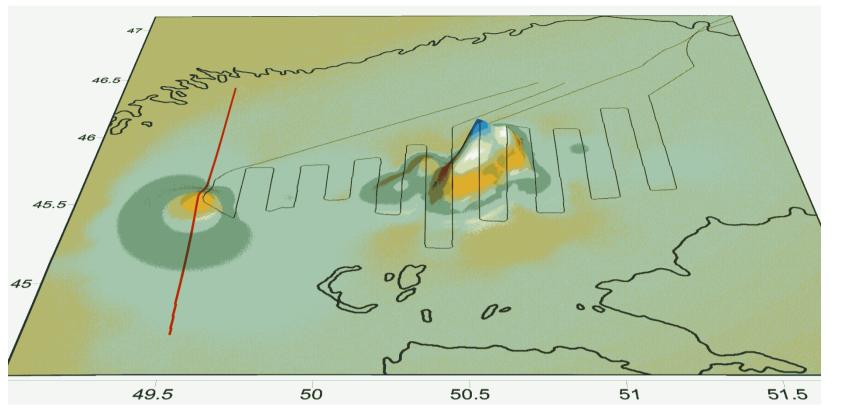
Первичная дешифровка полученных данных по фото, видео съемке и данных с тепловизора (ИК)


ИК-изображения распределения тюленей с привязкой к географическим координатам

Фотоснимок высокого разрешения с метками взрослых тюленей и щенков (красные и зеленые соответственно)

Блок-схема технологии обработки материалов авиасъемки тюленей





T O D L I C

Плотность распределения на льдах всех тюленей (слева) и щенков (справа) в 2024 г.

Район	Взрослые, особей	Бельки, особей	Линяющие, особей	Сивари, особей	Всего, особей	В том числе детенышей, особей	Доля детенышей, %
Казахстанский сектор	3409	162	661	527	4759	1350	28,15
Российский сектор	1060	50	203	161	1474	414	28,09
Итого	4469	212	864	688	6233	1764	56,24

В общей численности детенышей доля бельков составила 12%, линяющих - 49%, перелинявших молодых особей (сиварей) - 39%.

Акватория Северного Каспия	Щенки, экз.	Взрослые, экз.	Всего на ледовом поле, экз.	Общая численность, экз.
Казахстан	57310	132141	144448	277999
Россия	17577	27390	44967	99820
Всего	74887	159531	189415	377819

Расчет общей численности каспийского тюленя в 2024 году

Расчетные формулы оценки общей численности каспийского тюленя, в соответствии с утвержденным в РК методическим руководством, ранее были апробированы на популяциях гренландского тюленя в Белом море и применяются в Каспийском море уже более 10 лет.

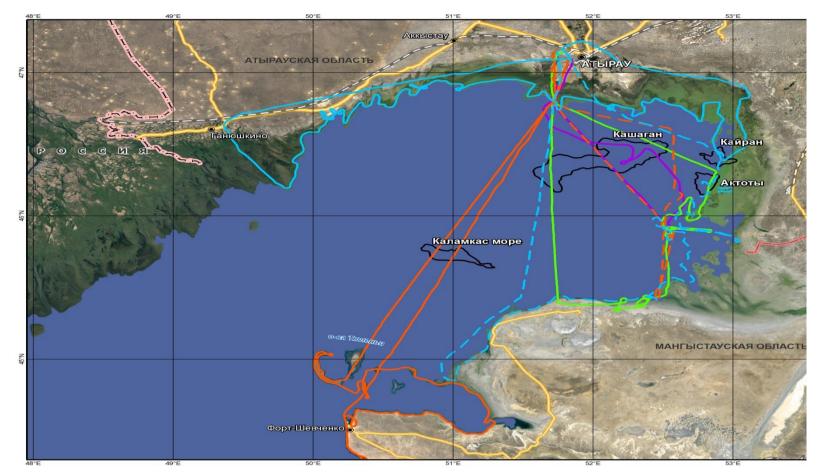
Возможные границы оценки численности тюленей	Численность приплода, экз.	Общая численность популяции, экз.
Нижняя граница оценки численности тюленей	57310	277999
Верхняя граница оценки численности тюленей	77888	377819

В соответствии с методическим руководством РК, предписывающее предосторожный подход, используется нижняя граница общей численности каспийского тюленя.

СРАВНИТЕЛЬНЫЙ АНАЛИЗ

Метод учета	Численность щенков, тыс.особей	Общая численность популяции, тыс.особей
Мультиспектральный авиаучет в 2012 г.	50,00	268,80
Мультиспектральный авиаучет в 2020 г.	58,24	282,32
Мультиспектральный авиаучет в 2021 г.	62,26	302,03
Мультиспектральный авиаучет в 2022 г.	67,31	311,38
Мультиспектральный авиаучет в 2023 г.	53,57	259,87
Мультиспектральный авиаучет в 2024 г.	57,31	278,00
Расхождение результатов между годами	12.8% (уролицациа)	3,3% (увеличение общей
исследований: 2012/2024	12,8% (увеличение)	численности)
Расхождение результатов между годами	6 5% (VD0 5M101M0)	6,6% (увеличение общей
исследований: 2023/2024	6,5% (увеличение)	численности)

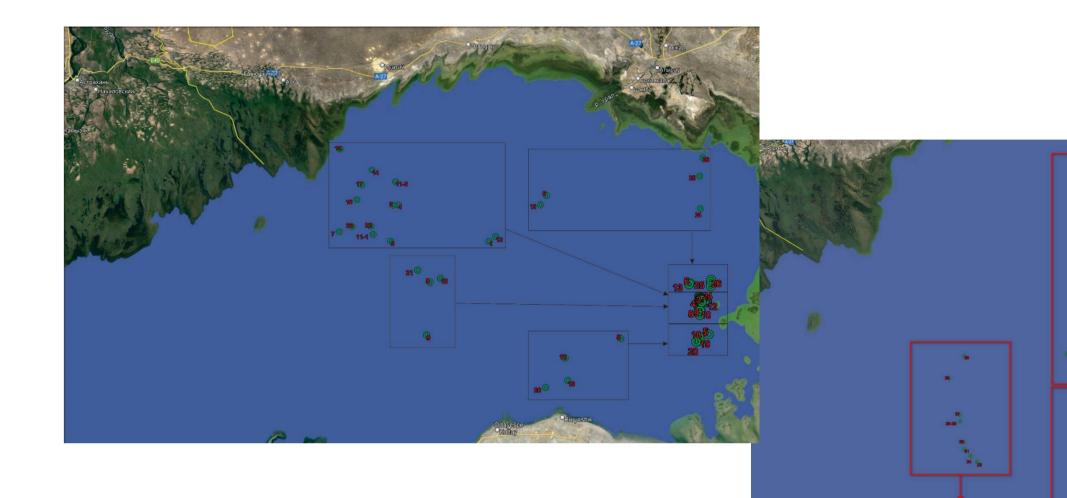
Анализ имеющихся данных за 2012, 2020-2024 годы показал увеличение численности воспроизводства щенков в текущем году (2024 г.) на 12,8% в сравнении с данными 2012 и 6,5% в сравнении с данными 2023 г. Относительная доля (%) продуцирующих самок в популяции каспийского тюленя в 2020, 2021, 2023 и 2024 гг. имела показатель равный 20,6%, в 2022 г. – 21,6%. Общая численность популяции зимой 2024 г. имеет незначительный прирост (7,5%), и ее нижняя граница численности составляет 277,999 тыс. особей каспийского тюленя, наблюдается медленное восстановление популяции, после массовой гибели в 2022-2023 гг.


Общая численность каспийского тюленя за 2012, 2020-2024 гг.

Годы	2012	2020	2021	2022	2023	2024
Нижняя граница оценки численности тюленей, особей	268800	282320	302016	311381	259872*	277999
Верхняя граница оценки численности тюленей, особей	360400	320800	369149	380418	342866	377819

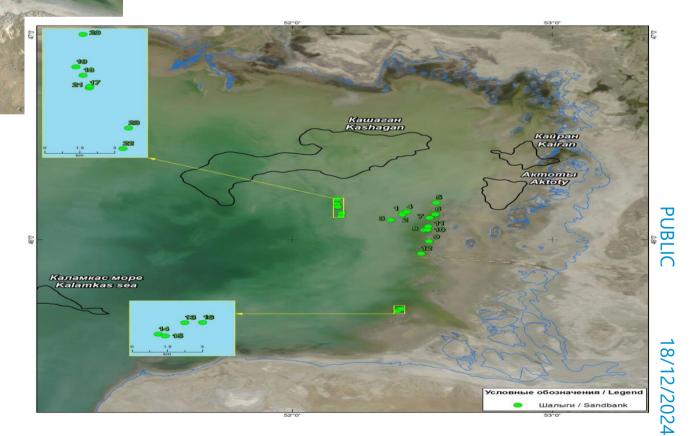
^{*}Снижение численности после гибели тюленей от чумы плотоядных и пневмонии вызванной H5N1 в безледный период 2022 г.

Учет численности линных залежек


Ежегодная схема полетов

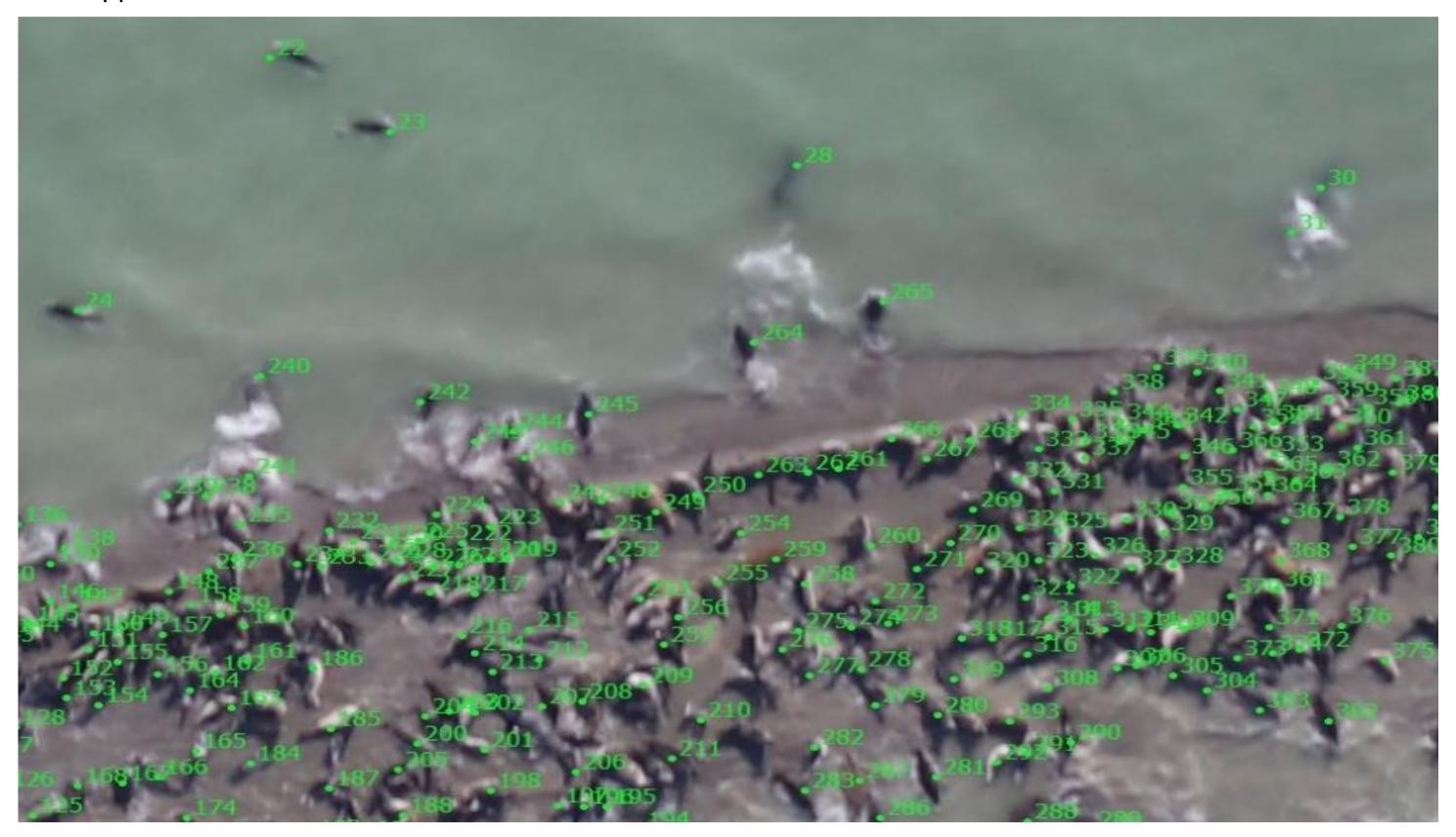
Весенний учет численности в период линных залежек в КСКМ проводился ежегодно в апреле-Исследования охватывают побережье мае. казахстанского сектора Северного Каспия от с.Курмангазы до реки Жайык, побережье полуострова Бузачи, Тупкараган, Мангышлак от п. Баутино до Сауры и острова (острова Дурнева, Тюленьи острова, острова в районах выхода устьев рек Жайык и Жем, морские шалыги, искусственные острова на Северо-Каспийском морском канале в районе Прорвы, защитные барьеры на месторождении Кашаган). Общая протяженность маршрутов авиаучетов составила более 3000 км.

Год	Дата	Количество шалыг где отмечалась		іенность ілыге, экз	Всего численность	Длина маршрута исследований, км	
		линька	Мини- мальная	Макси- мальная	шалыгах, экз		
2020	1-3 мая	6	53	1965	3231	2700	
2021	13-17 апреля	24	375	5151	13754	3500	
2022	5-9 апреля	23	61	4744	23272	3200	
2023	10-19 апреля	32	6	5814	43063	2500	
2024	8-12 апреля	23	6	9472	43993	2635	


Учет численности линных залежек

Весна 2022, на 23 шалыгах из 44 проходила линька каспийского тюленя, всего численность: **23272 особей**

Весна 2023, на 32 шалыгах из 52 проходила линька каспийского тюленя, всего численность: **43063 особей**



Весна 2024, на 23 шалыгах из 52 проходила линька каспийского тюленя, всего численность: **43993 особей**

Подсчет тюленей на шалыгах

По результатам камеральной обработки численность тюленей на 23 песчаных шалыгах весной 2024 г. составила 43993 особи, заполнение шалыг варьировало от 6 до 9472 особей тюленей.

POBLIC

3. Изучение современного состояния популяции каспийского тюленя с целью сохранения биоразнообразия Каспийского моря. Осень 2020-2023 года.

- 1) Учет тюленей на маршруте движения исследовательского судна и с маломерных моторных лодок
- 1. Отлов тюленей на островах и шалыгах:
- 2. Фото и видеосъемка
- 1) Морфометрические исследования (размерно-весовые характеристики животных)
- 2) Отбор крови, волос и вибрисс для токсикологических исследований
- 3) Отбор волос и вибрисс для гормональных исследований
- 4) Отбор образцов ткани для генетических исследований
- 5) Отбор крови и получения плазмы для серологических исследований, и мазка крови для оценки врожденного иммунитета.
- 6) Отбор смывов для вирусологических исследований
- 7) Отбор смывов для молекулярно-бактериальных исследований
- 8) Отбор ректальных смывов или свежих образцов фекалий для молекулярно-паразитологических исследований
- 9) Отбор смывов для микробиологических исследований
- 10) Отбор тканей для вирусологических исследований
- 11) Отбор биологического материала для морфологических исследований
- 12) Мечение животных тринадцатью спутниковыми радиомаяками.
- 3. Отбор проб у останков тюленей
- 4. Изучение погодных условий на участках исследований
- 5. Анализ полученых результатов и сравнение с данными прошлых лет и литературными данными.

3. Изучение современного состояния популяции каспийского тюленя с целью сохранения биоразнообразия Каспийского моря. Осень 2020-2023 года.

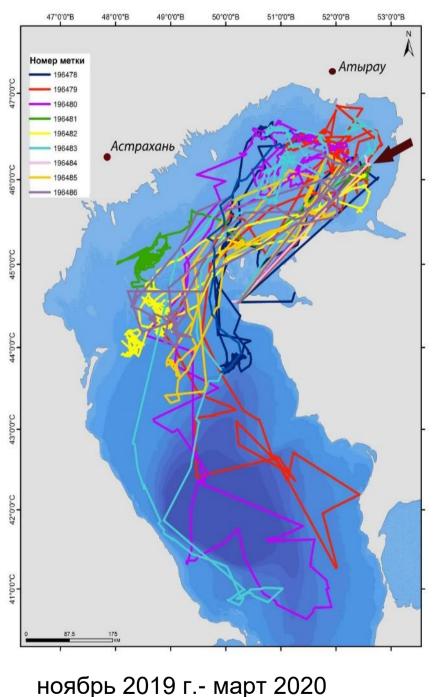
«Международная программа исследований каспийского тюленя на акватории Северного Каспия в 2019-2023 гг.»

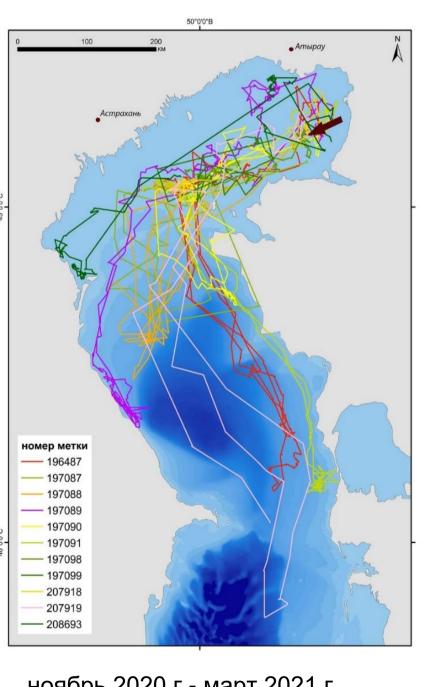
Цель: Изучить современное состояние популяции каспийского тюленя как эндемика фауны Каспийского моря и вида – индикатора состояния экосистемы Каспия.

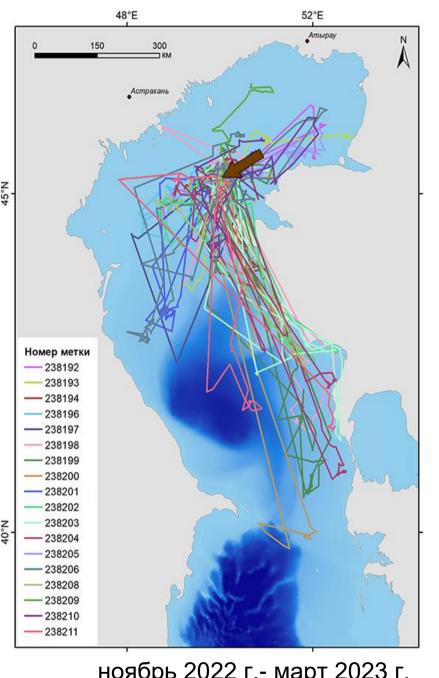
Задачи исследований:

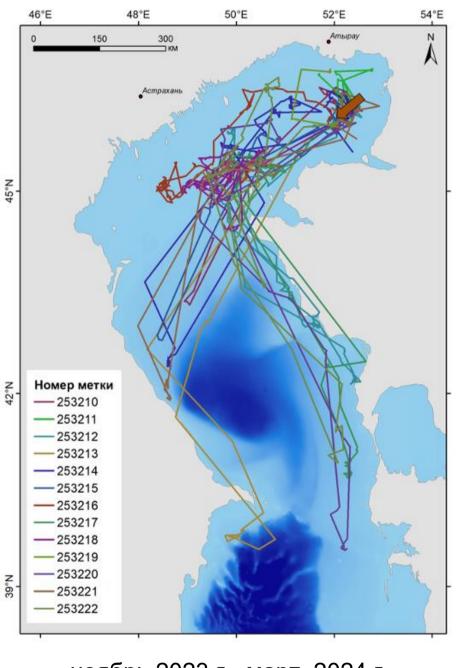
- 1. Анализ архивных данных результатов исследований состояния популяции каспийского тюленя.
- 2. Разработать единые процедуры исследований и методические подходы по отбору проб у каспийского тюленя.
- 3. Изучить современное распределение каспийского тюленя на акватории Казахстанского и Российского секторов Северного Каспия, структуру его ареала и численность вида.
- 4. Изучить оценку благополучия популяции каспийского тюленя в изучаемой акватории.
- 5. Изучить состояние мест обитания каспийского тюленя в Северном Каспии.
- 6. Выявить факторы негативного воздействия на каспийского тюленя и среду его обитания.
- 7. Определить перспективы и действия по сохранению каспийского тюленя и среды его обитания.

изучение современного состояния популяции тюленей изучение здоровья популяции тюленей


РЕЗУЛЬТАТЫ УЧЕТА ЧИСЛЕННОСТИ КАСПИЙСКОГО ТЮЛЕНЯ В АКВАТОРИИ


Дата	Место наблюдения	Длина маршрута*, км	Ширина учетной полосы, км	Площадь учетной полосы, км²	Количество учтенных тюленей, особь.	Плотность особь/км²
		2019 г.				
04.11.19	«Алина»	67	3	201,0	24	0,12
09.11.19	«Алина»	83	3	261,0	25	0,10
04.11.19	Моторная лодка	26	0,7	18,2	76	4,18
07.11.19	Моторная лодка	31	0,7	21,7	189	8,71
08.11.19	Моторная лодка	34	0,6	20,4	216	10,59
Среднее зна	чение с лодки					7,82
		2020 г.				
01.11.20-03.11.20	НИС «Алина»	282	1	282	44	0,15
03.11.20	Моторная лодка	26	0,6	15,6	88	5,64
06.11.20	Моторная лодка	26	0,6	15,6	142	9,10
Среднее зна	чение с лодки					7,37
		2022 г.				
03.11.22	T/X «Наутилус-один»	96	1	96,0	29	0,30
04.11.22	Моторная лодка	15,6	0,8	12,5	41	3,28
	Моторная лодка	15,6	0,8	12,5	90	7,20
05.11.22	Моторная лодка	15,6	0,8	12,5	56	4,48
06.11.22	Моторная лодка	15,6	0,8	12,5	21	1,68
07.11.22	Моторная лодка	15,6	0,8	12,5	42	3,36
08.11.22	Моторная лодка	15,6	0,8	12,5	34	2,72
Среднее зна	чение с лодки					3,79
		2023 г.				
11.11.2023	T/X «Наутилус-один»	217	1	217	147	0,68
16.11.2023	T/X «Наутилус-один»	118	1	118	70	0,59
11.11.2023	Моторная лодка	34	0,8	27,2	18	0,66
13.11.2023	Моторная лодка	24,6	0,8	19,7	46	4,5
14.11.2023 Среднее зна	Моторная лодка чение с лодки	8,0	0,8	6,4	60	9,4 4,85


Результаты изучения миграций каспийского тюленя с помощью установленных спутниковых радиометок в 2019 - 2024 гг...



Наблюдения показывают схожие маршруты перемещений каспийского тюленя за последние 20 лет, в некоторые теплые зимы площадь расширяется с учетом посещения западных участков Северного и Среднего Каспия.

ноябрь 2020 г.- март 2021 г.

ноябрь 2022 г.- март 2023 г.

ноябрь 2023 г.- март 2024 г.

ИЗУЧЕНИЕ ЗДОРОВЬЯ ПОПУЛЯЦИИ ТЮЛЕНЕЙ

Конъюнктивальные (глазные) смывы, или мазки, от живых тюленей собирались с целью идентификации возбудителей мультисистемных вирусных инфекций животных (аденовирусов, герпесвирусов, калицивирусов, коронавирусов, лиссавирусов, ортомиксовирусов, парамиксовирусов) и ряда других патогенов.

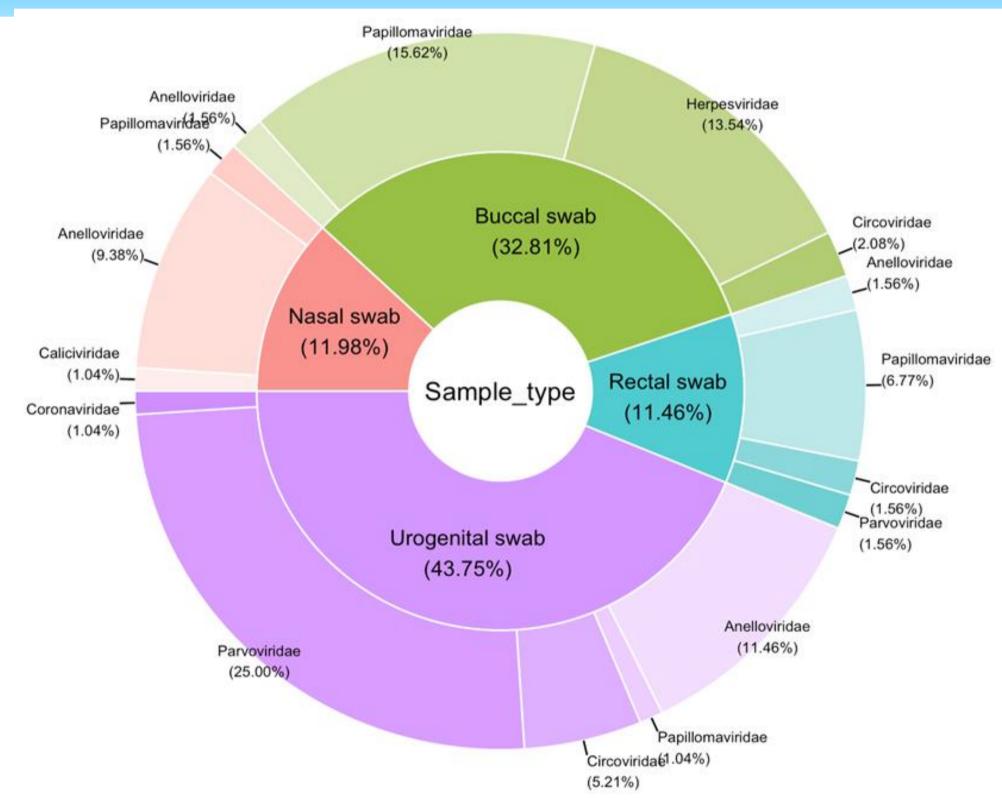
Назальные (носовые) смывы, или мазки, от живых тюленей собирались с целью идентификации возбудителей респираторных и мультисистемных вирусных инфекций животных передающихся воздушно-капельным путем; ортомиксовирусов (гриппозные инфекции); коронавирусов (коронавирус тюленей, коронавирус собак); морбилливирусов (в том числе чумы собак и чумы тюленей); герпесвирусов (альфа- и гамма-герпесвирусы тюленей серотипов 1-7); лиссавирусов (в том числе бешенства) и ряда других патогенов в организме животного.

Ротовые смывы от живых тюленей собирались с целью идентификации возбудителей респираторных, желудочно-кишечных и мультисистемных вирусных инфекций животных (аденовирусов, герпесвирусов, калицивирусов, коронавирусов, лиссавирусов, ортомиксовирусов, парамиксовирусов) и ряда других патогенов.

Урогенитальные смывы от живых тюленей собирались с целью идентификации возбудителей мультисистемных вирусных инфекций животных (аденовирусов, гепадновирусов, герпесвирусов, калицивирусов, папилломавирусов) и ряда других патогенов.

ИЗУЧЕНИЕ ЗДОРОВЬЯ ПОПУЛЯЦИИ ТЮЛЕНЕЙ

Ректальные смывы от живых тюленей собирались с целью идентификации возбудителей желудочно-кишечных и мультисистемных вирусных инфекций животных (аденовирусов, гепадновирусов, калицивирусов, папилломавирусов, парвовирусов) и ряда других патогенов.


Ткани головного мозга, легких, сердца, печени, почек и лимфатических узлов отбирались от павших тюленей для молекулярной диагностики вирусных инфекций животных; ортомиксовирусов (гриппозные инфекции); коронавирусов (коронавирус тюленей, коронавирус собак); морбилливирусов (в том числе чумы собак и чумы тюленей); герпесвирусов (альфа- и гамма-герпесвирусы тюленей серотипов 1-7); лиссавирусов (в том числе бешенства) и ряда других патогенов организме животного.

Отобраны пробы для различных анализов с целью оценки здоровья каспийского тюленя. Установлено несколько причин гибели тюленей - гриппозная инфекция (приводящая к острой пневмонии) и чума плотоядных. Отобраны пробы у 44 погибших тюленей, у 38 из которых обнаружена чума плотоядных и у четырех особей — легочная пневмония, вызванная вирусом H5N1. Как правило, вирусные инфекции снижают иммунитет животных.

ИЗУЧЕНИЕ ЗДОРОВЬЯ ПОПУЛЯЦИИ ТЮЛЕНЕЙ В 2019-2022 г.

За период исследований, в общей сложности было получено приблизительно 1 250 000 необработанных секвенированных ридов на образец. BLAST поиск полученных контигов с использованием порогового значения 10E-5 выявил наличие вирусов, принадлежащих к 11 семействам.

ИЗУЧЕНИЕ ЗДОРОВЬЯ ПОПУЛЯЦИИ ТЮЛЕНЕЙ

В микробиоме тюленей были обнаружены таксоны, представляющие 22 типа бактерий, в наборе данных преобладали пять типов: *Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes* и *Fusobacteria*, большинство из которых несут положительную роль, улучшая работу желудочно-кишечного тракта.

acidobacteria	actinobacteria	bacteroidetes	chlamydiae
4	6416	10049	57
chlorobi	chloroflexi	cyanobacteria	deferribacteres
38	12	35	257
deinococcus_thermus	euryarchaeota	fibrobacteres	firmicutes
23	11	1	22602
fusobacteria	gemmatimonadetes	lentisphaerae	nitrospira
2995	7	1	5
planctomycetes	proteobacteria	spirochaetae	synergistetes
127	15063	112	112
tenericutes	verrucomicrobia		
178	118		

Факторы, влияющие на сокращение вида, по результатам различных многолетних научных исследований в 2000-2024 г.г.

Основными критическими угрозами для каспийского тюленя являются: прилов при незаконном рыболовстве, а также рост нелегальной добычи тюленей (умышленного лова с использованием осетровых орудий лова и нелегального боя), который стимулируется повышенным рыночным спросом на тюленьи шкуры и жир как на рынках Прикаспия, так и в других регионах.

Серьезными угрозами также считаются фактор беспокойства и деградация среды обитания. К умеренным угрозам относятся болезни каспийского тюленя, в том числе массовые эпизоотии, паразитарные инвазии, биоаккумуляция токсикантов, вызывающие иммунодепрессию, патоморфологическое нарушение внутренних органов, в том числе возможно и репродуктивных.

Потенциальными угрозами, требующими внимания, но в настоящее время неоцененными с точки зрения воздействия на популяцию, следует считать: влияние загрязнений на пищевую цепь; сокращение численности объектов питания (рыбы); распространение инвазивных видов; изменение климата и возможное сокращение ледовых полей (мест размножения тюленей) и чрезмерный нагрев поверхностных вод Каспийского моря летом.

В вироме каспийских тюленей нами установлены наличие двух больших групп, состоящих из разных семейств вирусов: первая группа состоит из семейств *Circoviridae* и *Parvoviridae*, связанных с водной экосистемой. Первичными хозяевами этих вирусов являются различные организмы морской среды Каспийского моря. Например, беспозвоночные в случае цирковирусов или насекомые и ракообразные в случае денсовирусов семейства *Parvoviridae*. Следует отметить, что эта группа составляет 72% всего вирома каспийского тюленя. Возможно, они имеют диетическое происхождение. Ко второй группе относятся вирусы млекопитающих: *Herpesviridae*, *Papillomaviridae*, *Caliciviridae*, *Anelloviridae*, *Adenoviridae*, *Orthomyxoviridae* и *Paramyxoviridae*. Вирусы этой группы потенциально могут вызывать различные патологии у млекопитающих или протекать бессимптомно.

В микробиоме каспийских тюленей были обнаружены таксоны, представляющие 22 типа бактерий, в наборе данных преобладали пять типов: *Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes* и *Fusobacteria.* Установлены сходства профиля микробиома смывов респираторного, алиментарного и урогенитального трактов животных, собранных в 2020-2023 гг. Отмечалось вариация процентных соотношении семейств бактерии, в зависимости от вида образца от каспийского тюленя. Проведенное исследование указывает на необходимость постоянного мониторинга микробиома каспийских тюленей для выявления интродукции клинически значимых бактериальных патогенов в их популяцию. В целом результаты этого исследования обеспечивают хорошую основу для будущих исследований, и способствуют пониманию взаимодействия хозяина и микробов в популяции каспийского тюленя.

ТОКСИКОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ

Частотное распределение концентраций ртути в шерсти каспийского тюленя

Hg в шерсти, мкг/кг	Частота встречаемости, число особей	Кумулятивная частота встречаемости, число особей	Процент от общего числа	Кумулятивный процент
0–1000	13	13	11	11
1000–2000	29	42	35	36
2000–3000	32	74	28	64
3000–4000	17	91	15	79
4000–5000	11	102	10	89
5000-6000	4	106	3	92
6000–7000	2	108	2	94
7000–8000	3	111	3	97
8000–9000	2	113	2	99
9000–10000	1	115	0.5	99.5
10000-11000	1	115	0.5	100

За период работ (2019-2023 гг.) содержание ртути в вибриссах определено у 102 особей каспийского тюленя. Минимальное значение — 954 мкг/кг, максимальное — 12957 мкг/кг.

Частотное распределение концентраций ртути в крови каспийской нерпы

Hg в крови, мкг/л	Частота встречаемости, число особей	Кумулятивная частота встречаемости, число особей	Процент от общего числа	Кумулятивный процент
0–50	1	1	2	2
50–100	33	34	52	54
100–150	22	56	34	88
150–200	5	61	6	94
200–250	1	62	2	96
250–300	1	63	2	98
300–350	1	64	2	100

Концентрации ртути в крови определены в 2020, 2022 и 2023 году у 64 особей каспийского тюленя и варьировали от 29 до 350 мкг/л сырой крови. За референтное значение концентрации ртути в крови человека, выше которой проявляется нейротоксический эффект принято 200 мкг/л [Clarkson and Magos, 2006]. Если допустить что функционирования нервной системы у ластоногих нарушается при такой же концентрации ртути в крови, то из исследуемой выборки в зоне потенциального риска находится 3 особи каспийского тюленя (5%).

СЕРОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ

ТЕДОВАНИЯПО В НЕМ В

Сводные данные по проценту серопозитивности каспийских тюленей к различным патогенам в течение всех лет исследований

Патоген	2019 и 2020 (16 проб)	2021 (7 проб)	2022 (29 проб)	2023 (24 пробы)	ИТОГО (76 проб)	Среднее за 4 года
Toxoplasma gondii	0	0	24	13	13.2	9.2
Вирус простого герпеса	0	29	24	0	11.8	13.2
Trichinella sp.	8	0	0	0	1.3	1.9
Morbillivirus	25	71	83	67	64.5	61.5
Mycoplasma sp.	77	14	17	71	43.4	44.8
Chlamydia sp.	93	71	72	79	76.3	79.0
Candida sp.	92	71	83	92	82.9	84.5

PODLIC

СЕРОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ

Сводные данные по проценту серопозитивности каспийских тюленей к различным патогенам в течение всех лет исследований

Патоген	2019 и 2020 (16 проб)	2021 (7 проб)	2022 (29 проб)	2023 (24 пробы)	ИТОГО (76 проб)	Среднее за 4 года
Toxoplasma gondii	0	0	24	13	13.2	9.2
Вирус простого герпеса	0	29	24	0	11.8	13.2
Trichinella sp.	8	0	0	0	1.3	1.9
Morbillivirus	25	71	83	67	64.5	61.5
Mycoplasma sp.	77	14	17	71	43.4	44.8
Chlamydia sp.	93	71	72	79	76.3	79.0
Candida sp.	92	71	83	92	82.9	84.5

Токсоплазма (*Toxoplasma gondii*) является одним из наиболее широко распространённых паразитов в мире, способным поражать практически все теплокровные организмы. Токсоплазма широко встречается и у морских млекопитающих, в том числе у ластоногих. Предполагалось, что у каспийского тюленя серопозитивность к токсоплазме составляет более 80% [Namroodi et al., 2018]. При этом все взрослые животные имеют антитела к токсоплазме, у животных в возрасте до одного года 60% особей были серопозитивны к этому патогену. Токсоплазмоз может вести к иммуносупрессии хозяев и приводить даже к смерти животных [Greene, 2006]. Серопозивность к токсоплазме редко превышала 20%, составляя в среднем 13%. По данным казахстанских ученых, по результатам 10-летного исследования, антитела к токсоплазме выявлены лишь у 2,6% животных [Куdyrmanov et al., 2023].

Морбилливирусы неоднократно рассматривались как причина гибели различных видов ластоногих, в том числе и каспийского тюленя [Pollack et al., 2001; Jo et al., 2019]. Диагностика серопозитивности к различным его формам (вирус чумы плотоядных, вирусу чумы тюленей и морбилливирусу китообразных) крайне затруднена, так как из-за сходства вирусов между собой вырабатываемые животными антитела обладают большой кросс-реактивностью ко всем трем патогенам. Использованные наборы на определение антител к вирусу чумы плотоядных, обладали кросс-реактивностью и к вирусу чумы тюленей. По-видимому, вирус/вирусы циркулирует в популяции (что подтверждают полученные данные), иногда приводя к массовой гибели животных. Вместе с тем, в ноябре 2022 г у 83% каспийских тюленей были выявлены антитела к морбилливирусу.

Полученные серологические данные дополняют результаты ПЦР-скрининга на наличие вируса гриппа А в пробах тюленей, павших в казахстанской и российской частях моря в конце 2022 г., и косвенно свидетельствует о причастности возбудителя к вспышке эпизоотии гриппозной инфекции среди тюленей с высокой летальностью. антитела к CDV не обнаружены в сыворотках тюленей, собранных в 2020 г., в выявлены до 28% в образцах 2022 г.

PODLIC

Рекомендации

С учетом оценок первой половины прошлого века, когда общая численность популяции была оценена в 1 млн. экз [Бадамшин, 1966], современное состояние популяции все еще вызывает различные споры у научной общественности.

Подводя итоги, можно свидетельствовать, что сохранение каспийского тюленя требует совместных усилий сторон и местных компаний-операторов:

- изучение состояния популяции и миграции тюленей, санитарные исследования на уровне прибрежных стран;
- > мониторинг воздействия ледокольной навигации;
- > картирование действующих лежбищ тюленей;
- > изучение причин массовых падежей тюленей;
- исследования устойчивости популяции каспийского тюленя (воздействие и меры по сохранению).

СПАСИБО ЗА ВНИМАНИЕ!